🖾 Retour au sommaire

2. Czochralski method

The industrial growth of silicon single crystals for electronics is based on the Czochralski pulling technique. Large ingots (ϕ =10 cm, L=90 cm) weight 18 kg.

GaAs, GaP for electronics, $Gd_3Ga_5O_{12}$:Nd³⁺, $Y_3Al_5O_{12}$:Nd³⁺ (ϕ =5 cm, L=20 cm) for laser applications (and gem imitation), LiNbO₃ for optics and fluorides are, or were, produced at a much smaller scale.

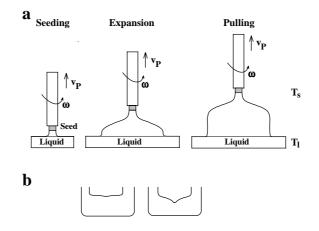


Figure 14. - Successive steps of Czochralski pulling technique.

An oriented crystal seed is fixed (figure 14) at the lower end of a rotating and translating vertical rod (ω rotation and v_P pulling rate or growth speed). It is kept at $T_S < T_m$, brought into contact with the fused melt ($T_1 \approx T_m$) and pulled up. The liquid is attracted by capillarity and submitted to the temperature gradient T_S - T_1 . The temperature gradient and the pulling rate v_P are then adjusted in order to increase the diameter of the crystallising solid (expansion operation). When the required diameter ($\approx 25-100$ mm) is obtained, the ω , v_P , T_1 , T_S parameters are regulated in order to keep constant the radius (R) or the weight increase of the crystal.

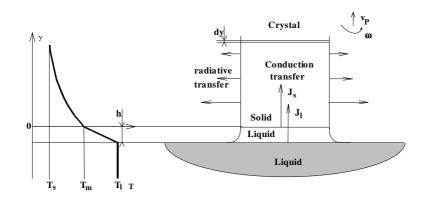


Figure 15. - Idealised temperature profile and heat exchange in Czochralski pulling technique.

Modelisation of the experiment is very complex : radiative (ΔH_{rad}) and non radiative (ΔH_{cond}) heat transfers, mass transport and diffusion, viscosity, gravity, must be taken into account. Consequently, a very simplified (and unphysical) model is given hereafter (figure 15), in order to estimate the influence of the experimental parameters. A linear temperature gradient, along y, is supposed to establish in the

liquid film attracted by capillarity (height h). The liquid-solid interface is supposed to be planar. At this interface (y = 0, $T = T_m$), the heat exchange, during the unit time, is :

$$\left|\vec{J}_{s}-\vec{J}_{l}\right|S = v_{p}\rho S\Delta H_{m}$$
 or $\chi_{s}\left[\left(\frac{\partial T}{\partial y}\right)_{y=0}\right] - \chi_{l}\left(\frac{T_{l}-T_{m}}{h}\right) = v_{p}\rho\Delta H_{m}$ {12}

In the solid, in steady-state conditions, summation of radiative (ΔH_{rad}) and conductive (ΔH_{cond}) heat fluxes through a closed surface Σ is nul. The surface is limited here by the cylinder of height dy and radius R (figure 15), σ is the emissivity and ε is the Stephan's constant.

$$\Sigma \Delta H = 0 = \Delta H_{rad} + \Delta H_{cond}$$

$$= -\sigma \varepsilon T^{4} dS - \vec{J} d\vec{\Sigma} = -\sigma \varepsilon T^{4} dS - div \vec{J} dv$$

$$= -\sigma \varepsilon T^{4} (2\pi R dy) + \chi_{s} \pi R^{2} dy \nabla^{2} (T)$$
hence, $\frac{\partial^{2} T}{\partial y^{2}} = 2 \frac{\sigma \varepsilon}{\chi_{s} R} T^{4}$
{14}

If the crystal growth of metals (Si ...) is considered, the thermal conductivity is approximated by : $\chi_s = \chi_m \frac{T}{T_m}$, then : $\frac{\partial^2 T}{\partial y^2} - 2aT^3 = 0$, with $a = \frac{\sigma \epsilon T_m}{\chi_m R}$.

A solution of this partial differential equation is : $T = \frac{A}{1 + By}$.

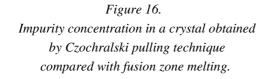
The limit conditions $(T = T_m \text{ at } y = 0 \text{ and } \frac{\partial T}{\partial y} = 0 \text{ at } y = \infty)$ give :

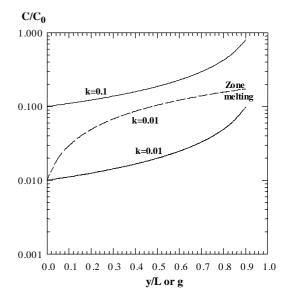
$$T = \frac{T_{m}}{1 + a^{1/2} T_{m} y} \qquad \text{and} \qquad \left(\frac{\partial T}{\partial y}\right)_{y=0} = -\frac{1}{\sqrt{R}} \left(\frac{\sigma \varepsilon}{\chi_{m}}\right)^{1/2} T_{m}^{5/2} \qquad \{15\}$$

Replacing in equation 12 finally leads to :

$$\frac{1}{\sqrt{R}} \left(\sigma \epsilon \chi_{\rm m} \right)^{1/2} T_{\rm m}^{5/2} = v_{\rm P} \rho \Delta H_{\rm m} + \chi_{\rm l} \left(\frac{T_{\rm l} - T_{\rm m}}{h} \right)$$

$$\{16\}$$


This expression shows that the radius of the cylindrical crystal decreases when T_1 , v_P or ω increase (h decreases); this radius is approximately proportional to $\omega^{-1/2}$. It must be noted that the preceding hypotheses rarely hold. Moreover, a flat interface does not necesserally favour the crystal quality (bubble trapping occurs). A convex interface is preferred (figure 14) and its shape depends strongly on the ω rotation speed.


Impurity segregation is calculated by considering the amount of impurity B which is rejected in the liquid during crystallisation. The solidified fraction g is defined by $g = m_s / M$ (crystal/total mass ratio)

$$(C_B^l - C_B^s)dm = m_1 dC_B^l \implies \frac{dC_B^l}{C_B^l - C_B^s} = \frac{dm}{m_1} = \frac{Mdg}{M(1-g)}$$

Integration gives :
$$C_{B}^{l} = \frac{C_{0}}{(1-g)^{l-k}}$$
 and $C_{B}^{s} = \frac{kC_{0}}{(1-g)^{l-k}}$ {17}

The relative concentration C_B^s/C_0 is presented in figure 16 for k=0.1 and compared with zone melting (1/L=1/20) for a single pass.

Materials which have been obtained by Czochralski growth include :

- semiconductors (Si ($T_m=1420^{\circ}C$), GaAs ($T_m=1283^{\circ}C$) or GaP ($T_m=1468^{\circ}C$ at $P_{eq}=3.8$ MPa)),
- cubic garnets (Gd₃Ga₅0₁₂ (GGG) T_m =1730 °C; Nd₃Ga₅0₁₂ T_m =1515 °C; Sm₃Ga₅0₁₂ T_m =1620°C)), LiNbO₃ (T_m =1980 °C),
- cubic perovskite fluorides (RbCaF₃ T_m=1120 °C ; KZnF₃ T_m=870 °C),
- layered perovskites K_xRb_{1-x}AlF₄ (T_m=550 °C),
- laser materials (LiCaAlF₆: Cr^{3+} (T_m=825 °C)), SrAlF₅ (T_m=887 °C), BaMgF₄ (T_m=940 °C).

It must be noted that most of these phases do not melt congruently for the stoechiometric ratios indicated above. Frequently, one of the constituents presents a non negligible pressure and partially evaporates at the growth temperature : P or As in III-V semiconductors, ZnF_2 in fluorides, Ga_2O_3 in GGG (the congruent melting phase is $Gd_{3.05}Ga_{4.95}O_{12}$).

For GaP, the dissociation reaction is : $GaP \rightarrow Ga + \frac{1}{n}P_n$

The stabilization of GaP for crystal growth is achieved by one of the following solutions :

- compensation of the partial pressure of phosphorus; the crystal and the melt are encapsulated in fused B₂O₃ (T_{softening}=425 °C) and heated in a high pressure equipment in order to keep P_{eq}>3.8 MPa;
- decrease of the temperature and of the phosphorus fugacity in the melt by starting from a 5 % or 10 % phosphorus concentration (figure 17); the temperature must be lowered during crystal growth along the liquidus curve BA.



Figure 17. - Ga-P phase diagram.

The control of the temperature allows for the extension of Czochralski growth to incongruently melting phases. This is illustrated by the growth of BaLiF₃ (inverse perovskite with Li in octahedral coordination, $T_m=826$ °C). The LiF-BaF₂ phase diagram is given in figure 4.a. It shows that BaLiF₃ crystallises from a LiF rich liquid (B composition). The temperature must be lowered during crystallisation at a speed which depends on the weight of the crystal. The BA liquidus curve is first computed from equation 2 with $\Delta H_f = 45 \text{kJ.mole}^{-1}$. Then, the variation of the temperature with time is calculated for the initial charge of melt (260 g, 43 % BaF₂ - 57 % LiF) and for the crystallisation conditions crystal diameter $(v_P=1 \text{ mm/h},$ φ=30 mm). The theoretical variation dT/dt is shown in figure 18 together with the experimental temperature program.

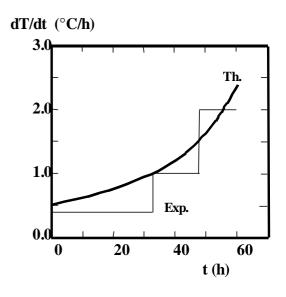


Figure 18. Temperature variation for the crystal growth of incongruent melting BaLiF₃.

Solid solutions $(Ba_{1-x}Pb_x)LiF_3$ were also investigated and lead was analysed for several positions along the generatrix of the crystals. Lead concentration was then deduced as a function of the solidified fraction g. The segregation coefficient for Pb²⁺ in BaLiF₃ is k≈0.05, as obtained from the fit of equation 17.

Other incongruently melting phases, grown by Czochralski technique can be cited : $LiYF_4$ (T=815 °C), K_2CoF_4 (T=830 °C). Several examples are listed in table 2.

	Material	Structure type	(Solvent)	Temperature (range) (°C)	Cooling rate (°C/h)	Rotation ω(rpm)	Translation v _P (mm/h)
Oxides	Y ₃ Al ₅ O ₁₂	Garnet	BaO-B ₂ O ₃	1350-1250		60	0.2
	Bi ₁₂ SiO ₂₀	Eulytite	6Bi ₂ O ₃ SiO ₂	900		20	0.35
Fluorides	YF ₃		0.8YF ₃ - 0.2LiF	1050-850		30	1
	LiYF ₄	Scheelite	0.51LiF- 0.49YF ₃	815-695		10	2.5
	KZnF ₃	Perovskite	KZnF ₃	870		20	1
	BaLiF ₃	Perovskite	0.43BaF ₂ - 0.57LiF	830-780	0.5,1,2	10	1
	BaMnF ₄		BaMnF ₄	755		20	4
	K_2ZnF_4		0.3ZnF ₂ - 0.7KF	720-675	5	60	10

Table 2 : Examples of materials obtained by Czochralski growth.