IV - Low pressure methods

The elaboration techniques that we call "low pressure methods", involve mass transport by gaseous species. Crystals and crystalline or amorphous thin films are deposited, eventually on a substrate, vitreous or crystalline.

1. Chemical transport

The nutrient is transformed in the mobile gaseous phase at temperature T₁, either by :

- sublimation, $I_2(\text{solid}) \stackrel{\leftarrow}{\rightarrow} I_2(\text{gas})$
- decomposition $NH_4Cl(solid) \xrightarrow{\leftarrow} NH_3(gas) + HCl(gas)$
- chemical reaction with a transport agent $Fe_2O_3 + HCl(g) \stackrel{\leftarrow}{\rightarrow} 2FeCl_3(g) + 3H_2O(g)$

Mass transport implies that the preceding reactions are, in fact, equilibria which can be displaced to the left side at a different temperature T_2 . The basic principle of transport is $K_P(T_2) < K_P(T_1)$ or $Log K_P(T_2) < Log K_P(T_1)$. This condition shows that the temperature gradient $\Delta T = T_2 - T_1$ must be chosen as a function of the sign of the enthalpy variation of the reaction :

$$Log K_{P} = -\frac{\Delta G^{0}}{RT} \implies \frac{\partial Log K_{P}}{\partial T} = \frac{\Delta H^{0}}{RT^{2}} \approx \frac{Log K_{P}(T_{2}) - Log K_{P}(T_{1})}{T_{2} - T_{1}}$$

and : $\Delta H^{0} > 0 \Longrightarrow T_{2} > T_{1}$ or $\Delta H^{0} < 0 \Longrightarrow T_{2} < T_{1}$

The equilibrium is realised at T_1 but not necessarily at T_2 ; deposition can occur at $T_1 < T < T_2$ or at $T > T_2$ when the free energy of particle formation is large. Good quality crystals are obtained when the kinetics of transport reactions is mainly governed by diffusion. The total pressure must lie in the range 10^4 - 10^5 Pa.

The matter flux of the i species along the y coordinate of the tube is :

$$J_{i} = -D_{i} \frac{\partial C_{i}}{\partial y} = -\frac{D_{i}}{RT} \frac{\partial P_{i}}{\partial y} \qquad (C_{i} = \frac{n_{i}}{V} = \frac{P_{i}}{RT})$$

In a steady state hypothesis $\frac{\partial C_i}{\partial t} = \frac{\partial J_i}{\partial y} = 0$, the flux of matter is : $J_i = -\frac{D_i}{RT} \frac{\Delta P_i}{L}$ {18}

 ΔP_i and L represent the pressure variation and the distance between the reaction zone and the growth zone ; D_i is supposed constant.

The reaction rate is easily expressed for the reaction : $A(s) + B(g) \xrightarrow{\leftarrow} C(g)$

The growth rate is: $\frac{dn_A}{dt} = -\frac{dn_B}{dt} = \frac{D_B}{RT} \frac{\Delta P_B}{RT} S$. ΔP_B is a function of ΔT and must be maximum. $K_P = P_C / P_B$ and $(P_B + P_C) / P_0 \approx 10^5 / P_0 = 1$, consequently :

$$\frac{dP_{\rm B}}{dT} = -\frac{1}{(1+K_{\rm P})^2} \frac{dK_{\rm P}}{dT} = -\frac{K_{\rm P}}{(1+K_{\rm P})^2} \frac{\Delta H^0}{RT^2}$$
^[19]

this expression is maximum for $K_{p} = 1$.

Good transport reactions are obtained when the following experimental conditions are fullfilled : $\Delta G_T^0 \approx 0$, $P_{Total} \approx 0.1-1$ Atm and $\Delta T \approx 20-200^{\circ}$ C. Thermodynamic data, when all the reaction products are known, allow the best experimental parameters to be foreseen.

Reactions are realised either in sealed tubes (glass, silica, Au, Pt) (figure 21) or in open tubes with a flow of inert gas. They can be used for metal purification : pure titanium is prepared industrially by this process. Self repairing of the tungsten filament is due to transport by WI_6 in quartz-iodine light bulbs. Oxides, sulphides, III-V semiconductors or mixed anionic compounds have been also studied (table 4.a).

Large single crystals can be grown by vacuum evaporation, effusion or crystallisation in a profile temperature gradient dT/dy (table 4.b)

Figure 21. - Principle of crystal growth by transport reaction.

Double heating furnace

Table 4: Examples of materials grown by vapour phase transport. **a - Closed sealed tube technique**

	Transported	Transport	Gaseous	Temperature	Temperature
	material	agent(s)	species	T ₁ (°C)	T ₂ (°C)
Metals	Ti	I ₂	TiI ₄	200	1000
	W	I ₂	WI ₆	400	1400
	Zr	I ₂	ZrI ₄	280	1430
	Au	Cl ₂	Au ₂ Cl ₂	1000	700
	Si	SiCl ₄	SiCl ₂	280	1430
III-V	GaAs	GaI ₃	As ₄ -GaI	1070	1030
Oxides	Ta ₂ O ₅	Cl ₂ -CrCl ₃	TaOCl ₃ -CrO ₂ Cl ₂	900	700
Sulfides	FeS	I ₂	FeI ₂ -S ₂	900	700
Mixed	CrOCl	CrCl ₃	CrO ₂ Cl ₂ -CrCl ₂	1000	840
anions	NbO ₂ F	NbCl ₅	NbOFCl2-NbOCl3	400	300

b-Vacuum evaporation technique

	Т	Pressure	dT/dy	Supercooling	
	(°C)	(10 ⁵ Pa)	(°C/cm)	(°C)	
LiF	1000	10-6	35		
NH ₄ Cl	150	10-4		25	
CaF ₂	1560	10-6	65		
CuBr	410	2 10 ⁻⁶		15	
CdS	1000	3 (H ₂ S)	10		whiskers
CdS	1050	1 (H ₂ S)	10		platelets
Zn	421	1.3 10 ⁻² (H ₂)	20		whiskers
Zn	439	5 10 ⁻³ (H ₂)	10		platelets
SiC	2390	1.6 10 ⁻² (Ar)	34		(polycrystal)

It must be noted that fullerene synthesis is achieved by a low pressure method. An electric spark is produced between two carbon graphite electrodes at low helium pressure. Carbone graphite sheets reorganise at high temperature to give buckyballs C_{60} , C_{70} ..., metallofullerenes $Ln@C_{82}$ (Ln=La, Y, rare-earth) or carbon nanotubes.