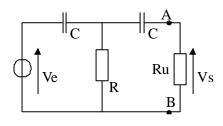
Solutions 🖈

Cours 🕏

5.1 - Filtre en T

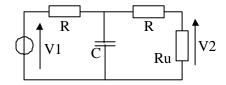


Calculer les éléments du générateur de Thévenin vu par R_U entre A et B. En déduire la fonction de transfert du montage :

$$H(j\omega) = V_S/V_E$$

Poser $x=RC\omega$ et conserver dans les calculs l'impédance complexe des condensateurs sous la forme Z_C le plus long-temps possible.

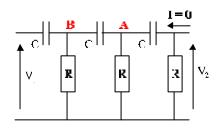
5.2 – Filtre en T



Calculer en régime sinusoï dal, la fonction de transfert de ce filtre. On posera $x=RC\omega$.

Tracer rapidement la courbe de réponse de ce filtre H(x) = f(Log(x)).

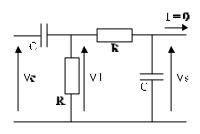
5.3 - Cellules RC en cascade



Le montage est alimenté par une tension sinusoï dale. Étudier le montage quand celui-ci possède une, deux puis trois cellules. Dans tous les cas, la dernière cellule n'est pas chargée. Calculer la fonction de transfert complexe $H(j\omega)$ du montage. On posera $x = RC\omega$.

Expliquer pourquoi H₂ est différent de H₁²

5.4 – Filtre passe bande



Le montage est alimenté par une tension sinusoï dale. Calculer la fonction de transfert complexe $H(j\omega)$ du montage puis en déduire sa norme $H(\omega) = \left|V_S \middle/ V_E\right|$.

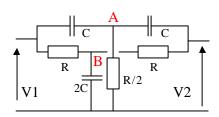
On posera $x = RC\omega$.

Tracer rapidement pour $0,1 \le x \le 10$ la courbe de réponse H(x) = f(Log(x)) de ce filtre.

5.5 – Réseau en double T

Calculer la fonction de transfert en régime sinusoï dal de ce circuit.

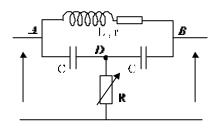
On suppose la sortie ouverte (pas de charge). Poser $\omega_0 = 1/RC$ et $x = RC\omega$.



On pourra soit transformer le circuit initial par utilisation du théorème de Kennely, soit appliquer le théorème de Millman en A puis en B.

Montrer que ce montage est un filtre coupe-bande dont la courbe de gain est symétrique par rapport à la valeur x = 1. On pourra par exemple changer x en 1/x.

5.6 – Filtre coupe bande

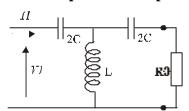


Calculer en régime sinusoï dal la fonction de transfert $H(j\omega) = V_S/V_E$ de ce montage si le courant de sortie est nul. Il est conseillé de transformer le schéma initial. Montrer que la norme de H est nulle pour $R = R_0$ et $\omega = \omega_0$.

$$AN : L = 0.25 \text{ H}; C = 2 \mu\text{F}; r = 10 \Omega.$$

Tracer grossièrement $||H|| = f(\omega)$.

5.7 – Fréquence de coupure



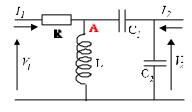
On considère le quadripôle ci-contre, alimenté par une tension sinusoï dale et fermé par une impédance Z₀. Calculer la matrice impédance de ce filtre. Calculer en fonction des paramètres Zij de la matrice l'expression de l'impédance d'entrée Z_E d'un quadripôle chargé par Z_0 .

On souhaite que Z_E soit égal à Z_0 ($V_1 = Z_0.I_1$). Montrer que Z_0 est soit purement réelle soit purement imaginaire selon que la valeur de la pulsation est supérieure ou inférieure à une valeur ω_0 que l'on exprimera en fonction de L et de C.

Reprendre l'exercice en remplaçant les condensateurs par des inductances de valeur L/2 et l'inductance par un condensateur de valeur C.

5.8 – Filtre de Colpitts

Calculer en régime sinusoï dal la fonction de transfert $H(j\omega) = V_S / V_E$ de ce montage quand le courant de sortie I2 est nul. L'écrire sous la forme :

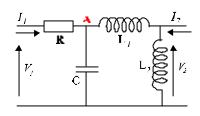


$$H = \frac{K}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{K}{1 + jQ(x - 1/x)}$$

avec
$$Q = RC\omega_0$$
; $K = C_1/(C_1 + C_2)$

et $x = \omega/\omega_0$.

5.9 – Filtre de Hartley



Reprendre l'exercice 5.8 avec le circuit ci-contre.

Poser cette fois $K = L_2/(L_1 + L_2)$

Comparer les résultats obtenus pour ces deux circuits.

Solutions 🗗

Retour au menu 🗗

