Ces filtres sont du type "commandé" car on peut agir sur le gain de l'amplificateur.
Consultez la page Sallen et Key pour obtenir des informations complémentaires sur la fonction de transfert des filtres.
Dans tous les cas, on suppose que l'amplificateur utilisé est idéal.
Si cette hypothèse n'est pas vérifiée, l'expression des fonctions de transfert est bien plus complexe.
Utilisation :
Il faut valider chaque entrée dans les boites de saisie.
Sélectionnez un filtre dans la liste et choisissez éventuellement la valeur du gain G de l'amplificateur.
Affichez soit la courbe de gain soit celle de phase.
Cliquez sur la courbe pour avoir les valeurs précises du gain ou de la phase au point choisi.
Filtres passe-bas et passe-haut du second ordre
Vérifiez l'évolution de la fréquence de coupure avec le gain. Vérifiez l'influence de la valeur des composants qui est assez critique pour ce type de filtre.
Filtres de bande du second ordre.
Pour ce filtre, montrez que si l'amplificateur fonctionne en suiveur (G = 1), le circuit se comporte en filtre passe-haut du premier ordre.
Filtres passe-bas d'ordres supérieurs
Pour faire un filtre du troisième ordre, on associe une cellule RC avec un filtre actif du second ordre. Les filtres d'ordres supérieurs sont faits par la mise en cascade de cellules d'ordres 2 et 3.
Le nombre d'inconnues (valeurs de R et C) est le double de l'ordre du filtre. En général, on construit des filtres suiveurs (G = 1) avec des résistances égales et des condensateurs dont les valeurs sont ajustées pour obtenir la pente la plus raide possible.
Les valeurs optimales sont affichées pour les configurations Butterworth et Chebycheff.
Dans un filtre de Butterworth on cherche à obtenir une courbe de gain aussi plate que possible.
Dans un filtre de Chebyscheff on cherche à obtenir des flancs aussi raides que possibles en acceptant des oscillations de la courbe du gain.
Expérimentez et vérifiez que la pente d'un filtre d'ordre n est −20.n dB / décade.